4n2 (n + 1), maka tentukan U 4 . 5. Nomor rumah pada salah satu sisi Jalan Makmur di Perumahan Asri dimulai dari nomor 143, 145, 147 dan seterusnya. Tentukan jumlah semua bilangan-bilangan bulat antara 100 dan 300 yang habis dibagi 5 tetapi tidak habis dibagi 7! 7. Menjatuhkan Bola,
ο»ΏJawaban4n - 1 tidak habis dibagi oleh 3Penjelasan dengan langkah-langkah4n - 1 = 3n + n-1artinya 4n - 1 tidak habis dibagi oleh 3, hanya n trtentu saja.
jadi pada soal kali ini Kita buktikan dengan induksi matematika bahwa soal di bawah ini itu benar langkah awal kita harus membuktikan bahwa N = 1 itu benar kita ambil saja suku yang pertama suku yang pertama itu ruas kiri nya tuh 1 per 1 dikali dua yaitu setengah ruas kanan itu n per M + 1 N kita subtitusi dengan 11 per 1 + 1 itu hasilnya setengah nah ini tuh sudah terbukti benar lalu Langkah
Jawabn Terbukti bahwa 3^4n -1 habis dibagi 80 untuk setiap n bilangan soalBuktikan bahwa 3^4n - 1 habis dibagi 80 untuk setiap n bilangan pembuktian dengan induksi matematikaBuktikan benar untuk n = 1Asumsikan benar untuk n = k buktikan benar untuk n = k +1 Untuk n = 23^ - 1 = 3^4 - 1 = 81 - 1 = 80-> 80 habis dibagi 80Maka terbukti benar untuk n = 1Asumsikan benar untuk n = k maka3^4k -1 = 80m untuk suatu mAkan dibuktikan benar untuk n = k +13^4k+1 - 1= 3^4k+4 - 1= 3^4k.3^4 - 1= 3^4 . 3^4k - 1= 81 . 3^4k - 1= 80. 3^4k + 3^4k - 1= 80 . 3^4k + 80m= 803^4k + mMaka 3^4k+1 - 1 adalah kelipatan 80, sehingga terbukti benar untuk n = k + 1Dengan demikian terbukti bahwa 3^4n -1 habis dibagi 80 untuk setiap n bilangan asli.
Banyaknya bilangannya yaitu: Un = a + (n - 1)b 99 = 3 + (n - 1) (3) 99 = 3 + 3n - 3 99 = 3n n = 99/3 n = 33 Sehingga: n (K) = 33 n (S) = 100 Peluang terpilih bilangan yang habis dibagi 3 yaitu: P (K) = n (K)/n (S) P (K) = 33/100 Jadi peluang terpilih bilangan yang habis dibagi 3 adalah 33/100 Semoga membantu ya, semangat belajar :) Beri Rating
Mentok ngerjain soal? Foto aja pake aplikasi CoLearn. Anti ribet βœ…Cobain, yuk!BimbelTanyaLatihan Kurikulum MerdekaNgajar di CoLearnPaket BelajarBimbelTanyaLatihan Kurikulum MerdekaNgajar di CoLearnPaket nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Buktikan 5^(n+1)-4n-5 habis dibagi 16 Buktikan bahwa 2+4+6+dots +2n=n(n+1). This question hasn't been solved yet Ask an expert Ask an expert Ask an expert done loading.
Kelas 11 SMAInduksi MatematikaPenerapan Induksi MatematikaPenerapan Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0314Nilai sigma n=2 21 5n-6 = ...0316Notasi sigma yang ekuivalen dengan sigma k=1 10 3k+2+si...0356Notasi sigma yang ekuivalen dengan sigma k=1 10 2k^2+8k+...0224Buktikan bahwa 2^2n-1 habis dibagi 3 untuk semua bilang...Teks videoitu bilangan asli bilangan asli adalah Bilangan yang dimulai dari angka 1 dan selanjutnya didapat dari menambah 1 akan kita peroleh 4 pangkat 1 per 14 pangkat 124 dikurang 1 tersisa 33 di sini itu habis dibagi 3 maka terbukti terbukti benar kita lanjutkan angka 2 itu untuk handphone ini akan kita asumsikan tidak tertulis di sinikita lanjutkan ke langkah tiga langkah ketiga yaitu dengan K + 1, maka akan kita peroleh 4 ^ k + 1 dikurang 14 pangkat x kita punya dikali 4 pangkat 14 pangkat kah dikalikan 4 - 1 kita dapat pecah 4 di sini menjadi 4 ^ k dikalikan dengan kita sepertinya bentuknya sekarang kita kalikan dengan 4 ^ X + 4 ^ X dikalikan 1 dikurangi 1 jadi bentuk ini dapat kita lihat bahwa 3 dikalikanbagi 3 selanjutnya untuk 4 ^ k dikalikan 1 dikurang 1 akar 4 pangkat x dikurangi 1 bentuk ini Apabila kita amati = s a n = k maka seperti ini kita akan membuktikannya untuk setiap nilai dari k s a k = 1, maka kita peroleh di sini yaitu 4 pangkat 1 dikurangi 1 maka 4 dikurang 1 = 3 terbukti dapat habis dibagi 32 tapi di sini atuh 4 pangkat 2 dikurang 1 maka 4 ^ 2 adalah 16 dikurang 1 jadi 15 habis dibagi 3 kita lanjutkan= 3 maka 4 pangkat 3 dikurangi 1 kita dapatkan disini yaitu 64 dikurangi 13 kita lanjutkan kita peroleh tuh nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Tunjukkan bahwa habis dibagi oleh 42. Pembahasan: dan 7 prima. Dengan menggunakan teorema fermat, kita peroleh: Sekarang perhatikan bahwa: . Kita tahu bahwa merupakan 3 bilangan bulat berurutan, maka bilangan ini pasti habis dibagi 3! = 6. Sehingga habis dibagi 6. Karena (7,6) =1, maka habis dibagi oleh =(6.7) = 42. MatematikaALJABAR Kelas 11 SMAInduksi MatematikaPrinsip Induksi MatematikaDiketahui Sn adalah sifat "4^n-1 habis dibagi 3". Andaikan Sn benar untuk n=k, maka 4^k-1 habis dibagi 3. Untuk n=k+1, maka ....Prinsip Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0218Buktikan 2+4+6+...+2n=nn+1, untuk setiap n bilangan n=1 4 2n+3=. . . .02081+2+4+8+. 2^n-1= 2^n -1 untuk setiap bilangan asli n0337Dengan induksi matematika, buktikan Pn = 1^2 +2^2 +3^2...Teks videoUntuk menyelesaikan soal ini kita tahu bahwa SN yang kita miliki adalah 4 pangkat n dikurangi 1 itu akan habis dibagi 3. Selanjutnya kita juga tahu bahwa Andaikan SN benar untuk n = k maka 4 pangkat x dikurangi 1 itu akan habis dibagi 3 yang saling memberi tahu seperti itu maka untuk Nilai N sama dengan Kak seperti apa tadi kita sudah tahu nilai SN itu sebenarnya rumusnya adalah 4 pangkat n dikurangi 1 Karena sekarang n = x + 1 maka kita tulis Jika n = x + 1 maka kita akan mendapatkan nilai kita ganti dengan K + 1 sehingga kita dapat 4 PlusDikurangi 1 nilai ini boleh kita tulis tidak tahu juga ada sifat eksponensial yang bentuknya seperti ini. Jika kita punya a pangkat b c itu nilainya sama saja dengan a pangkat b dikali a pangkat C sehingga untuk menyelesaikan bentuk 4 ^ k + 1 kita boleh tulis 4 pangkat Kak dikali dengan 4 pangkat 1 dikurangi 1 sehingga bentuk ini sama saja jika kita tulis 4 dikali 4 pangkat x dikurangi 1 sehingga jika kita lihat pada pilihan ganda kita akan mendapatkan jawaban yang tepat adalah B sampai jumpa di video pembahasan yang selanjutnya

3.4 1 2.3 1 1.2 1. . . + ( 1) 1 1 n n n n untuk semua n 1 2. Buktikan bahwa n3 + 5n dapat dibagi dengan 6 untuk semua n N 3. Buktikan bahwa 52n – 1 dapat dibagi dengan 8 untuk semua n N 4. Buktikan bahwa 5n – 4n – 1 dapat dibagi dengan 16 untuk semua n N 5. Buktikan bahwa jumlah pangkat tiga dari sembarang tiga bilangan asli yang

Soal Induksi Matematika, Buktikan n4 – 4n2 habis dibagi 3, untuk semua bilangan bulat lebih >=2. Langkah Basis Induksi, Untuk n=2 , maka n4 – 4n2 = 24 – =16 – 16 = 0hasilnya =0, angka 0 dibagi 3 adalah 0 Langkah Induksi, untuk n +1, maka = n4 – 4n2 = n+14 – 4n+12 = n4+4n3+6n2+4n+1 – 4n2+2n+1= n4 + 4n3 + 6n2 + 4n + 1 – 4n2 – 8n – 4= n4 – 4n2 + 4n3 + 6n2 – 4n – 3= n4 – 4n2 + 6n2 + 4n3 – 4n – 3= n4 – 4n2 + 6n2 + 4nn2 – 1 – 3= n4 – 4n2 + 6n2 + 4 n n – 1 n+1 – 3= n4 – 4n2 + 6n2 + 4 n – 1 n n+1 – 3 Kita lihat satu persatu hasil perhitungan terakhir diatas n4 – 4n2 Terbuka dari langkah awal basis Induksi6n2 Bilangan bulan kelipana 6 pasti habis dibagi 34 n – 1 n n+1 = perkalian 3 buah bilangan bulang berurutan n-1, n dan n+1 pasti kelipatan 3, misal 1 x 2 x 3 atau 4 x 5 x 6 – 3 Sudah jelas kelipatan 3 Post Views 21,612 VEJ96. 151 229 318 153 449 442 258 20 28

4n 1 habis dibagi 3